Evaluation of fracture strength of TiN thin films deposited on WC-Co substrate

نویسندگان

  • T. Takamatsu
  • Y. Miyoshi
  • H. Tanabe
  • T. Itoh
چکیده

To evaluate the fracture strength of TiN thin films deposited on the hard metal substrate WC-Co, and to investigate the influence of the deposition conditions (bias voltage VB) on the fracture strength of TiN thin films, the sphere indentation test was carried out to determine the ring crack initiation strength σf,m in TiN thin films deposited on two kinds of WC-Co substrates differing in hardness using sphere indenters of varying diameter. TiN thin films 2μm thick were deposited by dc magnetron sputtering under various VB. Based on the probabilistic theory assuming a two-parameter Weibull distribution, the averages of the fracture strength f σ% of TiN thin films without residual stress under conditions of uniform tensile stress and the residual stress R σ% of thin films were predicted from the distribution characteristics of σf,m. The main results were as follows: the average f σ% is almost independent of sphere indenter and substrate hardness, and decreases with increasing VB ; the variation in f σ% is mainly due to the grain size of thin films; the residual stress R σ% increases with increasing VB, and this tendency is qualitatively consistent with the measurements obtained by the X-ray diffraction method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Surface Roughness Morphology on Bond Strength of Thermal Sprayed WC-10Co-4Cr Ceramic/Metal Coating

In this study, the effect of surface roughness and roughness morphology on the bond strength of WC-Co-Cr coatings has investigated. The three different surfaces morphology are use for this purpose. The first and tow samples sandblasted with alumina and silicon carbide respectively. Other sample no sandblasted before spraying process. The same WC-10Co-4Cr coating deposited on the substrates with...

متن کامل

Preparation and growth of SnS thin film deposited by spray pyrolysis technique

In  this paper  thin  films of  tin sulfide (SnS) were deposited on  the glass substrates using spray pyrolysis method with the substrate temperatures in the range of 400–600℃, keeping the other deposition parameters constant. In  this work  the characteristic of SnS  thin  films  investigated. The XRD pattern and optical transmittance of thin films also are discussed. With the change in concen...

متن کامل

A Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates

The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...

متن کامل

Evaluation of Microstructure and Mechanical Properties of Ti6A14V / (WC-Co) Friction Welds

The metallurgical and mechanical properties of Ti6Al4V/(WC-Co) friction welds have ben investigated. The microstructure close to the bondline comprised a mixture of acicular and equiaxed α plus β phases. The diffusion of elements in the welded specimens has been detected. The fracture strengths of Ti6Al4V/(WC-Co) friction welds markedly improved when the cobalt content in the (WC-Co) carbide su...

متن کامل

Evaluation of Microstructure and Mechanical Properties of Ti6A14V / (WC-Co) Friction Welds

The metallurgical and mechanical properties of Ti6Al4V/(WC-Co) friction welds have ben investigated. The microstructure close to the bondline comprised a mixture of acicular and equiaxed α plus β phases. The diffusion of elements in the welded specimens has been detected. The fracture strengths of Ti6Al4V/(WC-Co) friction welds markedly improved when the cobalt content in the (WC-Co) carbide su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006